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The bottleneck graph partition problem is to partition the nodes of a graph into two equally sized sets, 
so that the maximum edge weight in the cut separating the two sets is minimum. Whereas the graph 
partition problem, where the sum of the edge weights in the cut is to be minimized, is NP-hard, the 
bottleneck version is polynomial. This paper describes an O(n2 log n )  algorithm for the bottleneck graph 
partition problem, where n is the number of nodes in the graph. We point out two interesting issues 
related to dynamic algorithms. We also generalize our polynomiality result (for fixed k) to the bottleneck 
k-cut problem with specified vertices and bounded components. 8 7996 John Wiby & Sons, Inc. 

INTRODUCTION 

The graph partition problem is defined on a graph, G 
= (V, E) , with a set of nodes V and a set of edges E. We 
will consider the weighted version where each edge e 
E E has a weight we associated with it. The problem is 
to find, among all partitions of V into equally sized sets 
V ,  and V2.  the partition that minimizes the total weight 
of the edges in the cut separating V ,  from V2. The graph 
partition decision problem was proved NP-complete in 
[ 31. Many heuristics have been developed for the prob- 
lem, the best known being the Kernighan-Lin heuristic [ 61. 

In this paper, we consider the bottleneck graph parti- 
tion problem, which is similar to the graph partition prob- 
lem described above, but in which the maximum weight 
edge in the cut is to be minimized. Monma and Sun [7] 
and Brucker [l] also tested for bipartition of a graph, in 
polynomial time. The difference here is that the sets have 
to be of a particular size; this aspect has not been ad- 
dressed before. Our problem is also similar to the p-center 
problem (see [ 21). except that we have to choose p = n/ 
2 “suppliers” and n / 2  “customers” so as to minimize 
the maximum cost associated with any supplier-customer 

pair (i.e., every customer needs supplies from each of the 
suppliers). 

It is frequently the case that the bottleneck version of 
a min-sum NP-complete problem is also NP-complete. 
This is the case for the p-center problem, which is the 
bottleneck version of the p-median problem. Another ex- 
ample is the bottleneck traveling salesperson problem 
which, like the traveling Salesperson problem, is also NP- 
complete. By contrast, however, we will show that the 
bottleneck graph partition problem (as well as a general- 
ized version of the problem related to the K-cut problem) 
is polynomial, despite the fact that the regular min-sum 
graph partition problem is NP-complete. 

The technique that we employ for this problem is of 
the same nature as the Bottleneck Algorithm used by 
Hochbaum and Shmoys [4], where it was applied to nu- 
merous NP-complete bottleneck problems to provide ap- 
proximation algorithms for the given problems. There, 
the algorithm was used in conjunction with a “test” that 
was an NP-complete decision problem; solving the “test” 
problem on a related graph ( a  power of the original 
graph), however, provided sufficient information for the 
derivation of an approximation algorithm running in poly- 
nomial time. Since the “test” used for the bottleneck 
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graph partition problem is not NP-complete, the adapta- 
tion of the bottleneck algorithm here is polynomial and 
provides an optimal solution. 

A straightforward iterative implementation of our algo- 
rithm runs in time O ( m n 2 ) .  Two improvements may be 
possible to the iterative procedure: First, a simple im- 
provement involves a dynamic maintenance of compo- 
nents in a graph to which edges are added one at a time; 
second, the algorithm for the graph partition may also 
be improved by incorporating a dynamic maintenance 
of solutions to the subset-sum problems that arise. We, 
however, use a binary search, rather than iterative, imple- 
mentation that provides an O ( n 2  log n )  algorithm for the 
problem. Potential improvements in the dynamic algo- 
rithms mentioned above, however, may lead to an algo- 
rithm with improved running time. 

1. THE BOTTLENECK ALGORITHM 

Given is a weighted graph G = (V, E )  with n nodes and 
rn edges. Without any loss in generality, we will assume 
that the graph G is connected and that the number of 
nodes n is even. Let the edges be sorted in nonincreasing 
weight: 

We wish to partition the nodes of the graph into two 
equally sized sets, so that the maximum edge weight in 
the cut separating the two sets is minimum. 

We define GI = (V, E i )  to be an unweighted sub- 
graph of G with the set of edges Ei = { e l ,  . . . , ei ) ,  
f o r i =  1,  . . . ,  m .  

Consider the following test, which is equivalent to the 
decision problem of the graph partition problem: “Is there 
a partition with cut weight zero?”: 

Test ( Gi ). Is there a partition of the connected compo- 
nents of Gi into two sets each containing n/2 nodes? 

We will later show that Test ( Gi ) can be answered in 
polynomial time, but first note the following straightfor- 
ward lemma and resulting corollary: 

Lemma 1.1. Test ( G I )  = “yes” o 3 a solution ofcost 
less than we,. 

Proof: [ =+ ] Suppose Test (G, ) = “yes.” Then, there 
exists a partition of the nodes of G into two equally sized 
sets VI and V, such that no edges in Gi cross between VI 
and V,. Therefore, any edge in G that crosses between 
VI and V, must have weight less than we,, i.e., we have 
a solution with cost less than we,. 

[ * ]  Now assume that there exists a solution of cost 

1. Let (’ be the set of connected components of G I .  
2. Let cl, . . . , c, be the sizes of the components in ( I .  

Call subset-sum, with 6 = n/2:  
if subset-sum returns “no” then output “no”; 
else output “yes” (Vl contains the components cho- 
sen for the set S). 

Fig. 1. Algorithm Test (GI)  

w.,, where we, c we,. Then, there is a partition of the 
vertices into two equally sized sets V ,  and V, such that 
no edge with weight greater than we, crosses between V ,  
and V, .  In other words, Test ( G k )  = “yes” for any k 
such that we& > w.,; in particular, Test ( G i )  = “yes.” 

Corollary 1.1. Let j = argmini (Test ( Gi ) = “no” ) . 
The optimal solution to the bottleneck graph partition 
problem is we,. 

The above corollary leads immediately to the following 
algorithm: 

procedure Bottleneck 
fori = l * . * m d o  

if Test ( G I )  = “no” then output we,; stop else 
continue 

end 

We show now that Test (GI ) can be solved in polyno- 
mial time. Each application of the test involves finding 
the sizes of the connected components of the graph G I .  
The connected components and their sizes can be found 
in time O( I Ei I) = O ( m ) .  Let these sizes be cI ,  . . . , c,,. 
The problem is then an instance of the subset-sum prob- 
lem with B = n / 2 :  

Subset Sum: Given values cI  , . . . , c,, and B, is there a 
subset, S E (1, . . . , p ) ,  such that Zicsc, = B? 

The problem of subset-sum is weakly NP-complete 
(see [ 51): It is NP-complete, but there is a dynamic pro- 
gramming algorithm running in time polynomial in B, 
namely, O ( p B ) .  Since in our case B = O ( n )  and p 
= O ( n ) ,  the running time of the dynamic programming 
algorithm is O( n’).  See Figure 1 for a description of the 
Test ( Gi ) algorithm; details of the dynamic programming 
procedure used to solve the subset-sum problem can be 
found in the next section, where we consider a generaliza- 
tion of the bottleneck graph partition problem. 

A straightforward implementation of Bottleneck re- 
quires m applications of the test, leading to an overall 
running time of O(mn2) for Bottleneck. 
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We now propose several possible improvements to 
speed up the running time of Bottleneck. 

The Bottleneck algorithm searches for the optimal 
w., , as described in Corollary 1.1, in an iterative manner. 
The best running time that we have been able to achieve 
is realized by employing a binary, rather than iterative, 
search for the optimal we,. We can reduce the number of 
calls to Test (G,) from O(m) to O(1og m )  and thereby 
find the optimal w,, in time O(nZ log n).* 

Another approach is to improve the running time of 
an iterative implementation of Bottleneck. For instance, 
the application of the algorithm can be preceded by a 
preprocessing step, producing for each graph G, the list 
of sizes of its connected components. As this is equivalent 
to the disjoint sets union-find problem, it can be accom- 
plished in time O ( m ( m ,  n)),  where a is Tarjan’s inverse 
of Ackermann’s function (see [ 81). Since for the graph 
Go = (V. Eo) the number of components is n (all isolated 
vertices), there are, in the process of scanning the lists 
for G I ,  i = 1, . . . , m, at most n steps when an edge is 
added and the sizes of components of the graph are 
changed. Hence, we need consider only the indices i I , 
. . . , i,, that correspond to the highest index graph prior 
to a change in the number of connected components. 
Consequently, the procedure Bottleneck only goes 
through at most n steps rather than m steps, yielding a 
running time of O(ma(m, n) + n3), which is O(n3).  

Notice that the O(n’) term dominates the running time 
of the above procedure. Hence, a second potential im- 
provement to an iterative Bottleneck may be realized by 
improving the efficiency of our dynamic programming 
procedure that solves the subset-sum problem arising in 
Test (GI ). Observe that two consecutive calls to the sub- 
set-sum differ only in that, in the latter call, some of the 
subset sizes have been combined. Thus, it may be possible 
to take advantage of earlier calk to reduce the O( n 2 ,  run- 
ning time of the dynamic programming procedure and 
theEby provide an implementation of B o t t l e d  that has 
a better running time than has the 0 ( n log n ) algorithm. We 
have not, however, been able to find such an improvement. 

2. GENERALIZATIONS 

Using the same general strategy as above, we can easily 
handle several generalizations to the bottleneck graph par- 
tition problem. It is convenient to first consider the k- 
subset-sum problem that will arise when solving what 
we will refer to as the generalized bottleneck partition 
problem. 

* Note that we are assuming that the edge weights are presorted; 
otherwise. we must add O(m log n )  to the running times. ‘Ihis does 
not affect the asymptotic running time of our algorithm, but could be 
the bottleneck in an “improved” algorithm. 

k-Subset Sum: Given values cI, . . . , c,,, and A , ,  . . . , 
At. B , ,  . . . , Bk, is there a partition of the set [ 1, . . . , 
p )  into k subsets, SI, . . . , Sk, such that Aj 5 cjcsj cj 
I B,, f o r j  = 1 , .  . . , k? 

Observe that the subset-sum problem is a special case 
of the k-subset-sum problem, with k = 2 and Aj = Bj. As 
is the case for the subset-sum problem, the k-subset-sum 
problem is weakly NP-complete. We can solve the prob- 
lem in O(pk ll;:,’ Bj) time using a dynamic programming 
procedure, as follows: 

Let 

true, if the numbers cI , . . . , cj can be 

partitioned 

into k sets with the j’th set having 

weight nj 

(Note: the weight of nk is implicit from 

the other parameters) 

false, otherwise. 

The function, T, satisfies the following recurrence and 
boundary condition: 

Boundary Condition: 

To(O, . . . , 0) = true 

Recurrence: 

Ti(n, ,  . . . , nk-l)  = T,-,(n, - c j ,  . . .. nk-l) or 

- - -or 7‘-l(nl , .  . . , nk-l - c i )  

or 7‘-l(nl, . . . , nk-I) 

The answer to the k-subset-sum problem is “yes” if 
T p ( N l ,  . . . , Nk-l ) = true for some ( N, ) satisfying A, 
s N, 5 B,, for 1 s j s k (again, note that Nk is implicitly 
given). 

The function values of Tcan be calculated in increasing 
values of n , .  . . . , nk, i, for 0 5 n, s B, and 0 5 i s p. 
Each value of T can be evaluated in O(k) time, leading 
to the O(kp llfl,’ B,) running time. Clearly, it is advanta- 
geous to let ck = max, { c, ) .  
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1. Let i’ be the set of connected components of G, . 
2. Initialize V, * 0, j = 1, . . . , k .  
3. for C E 0 do: 

0 then: 
output “no”; 
STOP. 

”+  (’ - (C); 
r,m * t ( n )  - ICI ; 
g,(n) +am - ICI; 
V,+ V, u (C). 

a)  if 3 j ,  + j 2  such that C n W,, # 0 and C n W,, # 

b) if C n W, + 0 then: 

4. Let cl, . . . , c, be the sizes of the components that remain 

Call k-subset-sum, with A, = ( ( n )  and B, = g,(n), for j 
in 0, 

= 1, . . . ,  k :  
if k-subset-sum returns “no” then output “no”; 
else output “yes” (V, + V, u S,, where S, contains the 
components chosen for set j ) .  

Fig. 2. Algorithm Test ( G j )  for generalized problem. 

We now define the generalized bottleneck graph parti- 
tion problem: 

Instance: A weighted graph G = (V, E) and integer k ,  
specified subsets of the vertices, W,, and integersf,( n ) ,  
g,( n ) ,  for j = 1, . . . , k .  A legal partition of the vertices, 
V,  into k subsets, V , ,  . . . , V, ,  satisfies, V j :  g,(n) 
5 IV,l s f ; ( n ) ,  and W, E V,. 

Optimization Problem: Find a legal partition of the ver- 
tices such that the maximum weight edge crossing be- 
tween any two of the sets, V,, and Y2,  is minimum. 

To handle this generalized problem using Bottleneck, 
we proceed exactly as in the previous section, but modify 
the “test”: 

Test ( Gj ) : Is there a partition of the connected compo- 
nents of Gi that results in a legal partition? 

Consider the connected components of G, .  If there 
exists a component, C ,  such that C n W, # 0. then C 
must be in V,. It follows that if there is a component C 
such that C f l  W,, f 0 and C n W, f 0, for j ,  and j ,  
different, then the answer to Test (GI ) = “no.” Assum- 
ing that this is not the case, we can immediately assign 
some of the connected components to particular sets, V,. 
Of the remaining components, we wish to assign them to 
the V,’s to create, if possible, a legal partition; this can 
be accomplished via the k-subset-sum procedure. See Fig- 
ure 2 for the details of the algorithm. 

Theorem 2.1. The generalized bottleneck graph partition 

problem can be solved in O(  max ( m, knF ) log n )  time, 
where F = f l f : , ’ f ; ( n ) .  

Proof: The correctness of the algorithm for the gener- 
alized graph partition problem follows from the correct- 
ness of Test ( Gj ). 

Each call to test Test (Cj)  requires finding the con- 
nected components of Gi and an application of the k- 
subset-sum problem. The connected components can be 
found in time O ( m ) ,  and the k-subset-sum problem can 
be solved in time O(knF) ,  since p = O ( n )  and Bj 
= O ( f , ( n ) ) .  Using a binary search procedure, we make 
O(1og n) calls to the “test,” which yields the overall 
running time. 

We have provided an algorithm for the generalized 
graph partition problem which has polynomial running 
time for k fixed. If, however, k is considered to be part 
of the input, then the generalized graph partition problem 
is NP-hard. 

Theorem 2.2. No polynomial algorithm exists for solv- 
ing the generalized graph partition optimization problem, 
unless P = NP. 

Proof: We proceed by showing that a polynomial al- 
gorithm for the generalized graph partition problem im- 
plies the existence of a pseudopolynomial algorithm for 
the 3-partition problem. Since 3-partition is known to be 
strongly NP-complete (see [ 2 ] ) ,  such an algorithm would 
imply that P = N P .  

Consider an instance of 3-partition: a set A of 3m ele- 
ments, a bound B E Z ’, and a size s ( a )  E 2 ’ for each 
a E A ,  such that each s ( a )  satisfies ( B / 4 )  < s ( a )  < ( B /  
2 )  and such that ZUtA s ( a )  = mB. The problem is to 
find a partition of A into m disjoint sets S , ,  S2,  . . . , S,, 
such that Cats, s ( a )  = B, for i = 1, . . . , m .  

Now, for such an instance of 3-partition, construct a 
complete weighted graph G = (V, E) as follows: V 
= U:ZIX,, where I X , l  = s ( a , ) ;  if e E E is an edge 
between two vertices in the same W, , then assign it weight 
1, and otherwise, assign it weight 0. It is easy to see that 
the optimal solution to the generalized graph partition 
problem on G (with k = m and, f o r j  = 1, . . . , k ,  f l (n)  
= g,(n) = B and W, = 0)  is 0 if and only if a solution 
exists to the 3-partition instance. Since k = m and I V I 
= n = mB, and noting that the reduction described can 
be canied out in pseudopolynomial time, it follows that 
a polynomial algorithm for a generalized graph partition 
implies a pseudopolynomial algorithm for 3-partition. 

3. SUMMARY 

We have shown that the bottleneck graph partition prob- 
lem can be solved in polynomial time, despite the fact 
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that the min-sum version of the problem is NP-hard. Our 
algorithm uses the Bottleneck Algorithm described in [ 41 
and takes advantage of the pseudo-polynomiality of the 
subset-sum problem. Our algorithm runs in time O(n2 
log n), where n is the number of vertices in the graph; 
for dense graphs, this running time is asymptotically opti- 
mal for any algorithm that requires, but does not presume, 
the edge weights to be sorted, since we have a lower 
bound of O( m log m ) for sorting (of course, we have not 
established that having sorted edge weights is necessary 
for solving the bottleneck graph partition problem). 

Having established the polynomiality of the bottleneck 
graph partition problem, it may be interesting to discover 
other polynomial algorithms using different approaches. 
For instance, perhaps some type of iterative local neigh- 
borhood search algorithm is possible. We observe, how- 
ever, that a simple neighborhood based on swapping verti- 
ces between sets is not exact, i.e., a local improvement 
algorithm using a neighborhood based on swapping verti- 
ces between sets can get trapped in minima that are lo- 
cally, but not globally, optimal. 

This research was supported in part by ONR Contract 
N00014-91-J-1241 (D.S.H.). A.P. was supported in part by an 
NSERC '67 scholarship provided by the Natural Sciences and 
Engineering Research Council of Canada. 
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