
The Bottleneck Graph Partition Problem

Dorit S. Hochbaum

Department of Industrial Engineering and Operations Research and Walter A. Haas School of
Business, University of California, Berkeley, Berkeley, California 94720-1 777

Anu Pathria

Department of Industrial Engineering and Operations Research, University of California,
Berkeley, Berkeley, California 94720

The bottleneck graph partition problem is to partition the nodes of a graph into two equally sized sets,
so that the maximum edge weight in the cut separating the two sets is minimum. Whereas the graph
partition problem, where the sum of the edge weights in the cut is to be minimized, is NP-hard, the
bottleneck version is polynomial. This paper describes an O(n2 log n) algorithm for the bottleneck graph
partition problem, where n is the number of nodes in the graph. We point out two interesting issues
related to dynamic algorithms. We also generalize our polynomiality result (for fixed k) to the bottleneck
k-cut problem with specified vertices and bounded components. 8 7996 John Wiby & Sons, Inc.

INTRODUCTION

The graph partition problem is defined on a graph, G
= (V, E) , with a set of nodes V and a set of edges E. We
will consider the weighted version where each edge e
E E has a weight we associated with it. The problem is
to find, among all partitions of V into equally sized sets
V , and V2. the partition that minimizes the total weight
of the edges in the cut separating V , from V2. The graph
partition decision problem was proved NP-complete in
[31. Many heuristics have been developed for the prob-
lem, the best known being the Kernighan-Lin heuristic [61.

In this paper, we consider the bottleneck graph parti-
tion problem, which is similar to the graph partition prob-
lem described above, but in which the maximum weight
edge in the cut is to be minimized. Monma and Sun [7]
and Brucker [l] also tested for bipartition of a graph, in
polynomial time. The difference here is that the sets have
to be of a particular size; this aspect has not been ad-
dressed before. Our problem is also similar to the p-center
problem (see [21). except that we have to choose p = n/
2 “suppliers” and n / 2 “customers” so as to minimize
the maximum cost associated with any supplier-customer

pair (i.e., every customer needs supplies from each of the
suppliers).

It is frequently the case that the bottleneck version of
a min-sum NP-complete problem is also NP-complete.
This is the case for the p-center problem, which is the
bottleneck version of the p-median problem. Another ex-
ample is the bottleneck traveling salesperson problem
which, like the traveling Salesperson problem, is also NP-
complete. By contrast, however, we will show that the
bottleneck graph partition problem (as well as a general-
ized version of the problem related to the K-cut problem)
is polynomial, despite the fact that the regular min-sum
graph partition problem is NP-complete.

The technique that we employ for this problem is of
the same nature as the Bottleneck Algorithm used by
Hochbaum and Shmoys [4], where it was applied to nu-
merous NP-complete bottleneck problems to provide ap-
proximation algorithms for the given problems. There,
the algorithm was used in conjunction with a “test” that
was an NP-complete decision problem; solving the “test”
problem on a related graph (a power of the original
graph), however, provided sufficient information for the
derivation of an approximation algorithm running in poly-
nomial time. Since the “test” used for the bottleneck

NETWORKS, Vol. 28 (1996) 221 -225
0 1996 John Wiley 8 Sons, Inc. CCC 0028-3045/96/040221-05

221

222 HOCHBAUM AND PATHRLA

graph partition problem is not NP-complete, the adapta-
tion of the bottleneck algorithm here is polynomial and
provides an optimal solution.

A straightforward iterative implementation of our algo-
rithm runs in time O (m n 2) . Two improvements may be
possible to the iterative procedure: First, a simple im-
provement involves a dynamic maintenance of compo-
nents in a graph to which edges are added one at a time;
second, the algorithm for the graph partition may also
be improved by incorporating a dynamic maintenance
of solutions to the subset-sum problems that arise. We,
however, use a binary search, rather than iterative, imple-
mentation that provides an O (n 2 log n) algorithm for the
problem. Potential improvements in the dynamic algo-
rithms mentioned above, however, may lead to an algo-
rithm with improved running time.

1. THE BOTTLENECK ALGORITHM

Given is a weighted graph G = (V, E) with n nodes and
rn edges. Without any loss in generality, we will assume
that the graph G is connected and that the number of
nodes n is even. Let the edges be sorted in nonincreasing
weight:

We wish to partition the nodes of the graph into two
equally sized sets, so that the maximum edge weight in
the cut separating the two sets is minimum.

We define GI = (V, E i) to be an unweighted sub-
graph of G with the set of edges Ei = { e l , . . . , ei) ,
f o r i = 1, . . . , m .

Consider the following test, which is equivalent to the
decision problem of the graph partition problem: “Is there
a partition with cut weight zero?”:

Test (Gi). Is there a partition of the connected compo-
nents of Gi into two sets each containing n/2 nodes?

We will later show that Test (Gi) can be answered in
polynomial time, but first note the following straightfor-
ward lemma and resulting corollary:

Lemma 1.1. Test (G I) = “yes” o 3 a solution ofcost
less than we,.

Proof: [=+] Suppose Test (G,) = “yes.” Then, there
exists a partition of the nodes of G into two equally sized
sets VI and V, such that no edges in Gi cross between VI
and V,. Therefore, any edge in G that crosses between
VI and V, must have weight less than we,, i.e., we have
a solution with cost less than we,.

[*] Now assume that there exists a solution of cost

1. Let (’ be the set of connected components of G I .
2. Let cl, . . . , c, be the sizes of the components in (I .

Call subset-sum, with 6 = n/2:
if subset-sum returns “no” then output “no”;
else output “yes” (Vl contains the components cho-
sen for the set S).

Fig. 1. Algorithm Test (GI)

w.,, where we, c we,. Then, there is a partition of the
vertices into two equally sized sets V , and V, such that
no edge with weight greater than we, crosses between V ,
and V, . In other words, Test (G k) = “yes” for any k
such that we& > w.,; in particular, Test (G i) = “yes.”

Corollary 1.1. Let j = argmini (Test (Gi) = “no”) .
The optimal solution to the bottleneck graph partition
problem is we,.

The above corollary leads immediately to the following
algorithm:

procedure Bottleneck
fori = l * . * m d o

if Test (G I) = “no” then output we,; stop else
continue

end

We show now that Test (GI) can be solved in polyno-
mial time. Each application of the test involves finding
the sizes of the connected components of the graph G I .
The connected components and their sizes can be found
in time O(I Ei I) = O (m) . Let these sizes be cI , . . . , c,,.
The problem is then an instance of the subset-sum prob-
lem with B = n / 2 :

Subset Sum: Given values cI , . . . , c,, and B, is there a
subset, S E (1, . . . , p) , such that Zicsc, = B?

The problem of subset-sum is weakly NP-complete
(see [51): It is NP-complete, but there is a dynamic pro-
gramming algorithm running in time polynomial in B,
namely, O (p B) . Since in our case B = O (n) and p
= O (n) , the running time of the dynamic programming
algorithm is O(n’). See Figure 1 for a description of the
Test (Gi) algorithm; details of the dynamic programming
procedure used to solve the subset-sum problem can be
found in the next section, where we consider a generaliza-
tion of the bottleneck graph partition problem.

A straightforward implementation of Bottleneck re-
quires m applications of the test, leading to an overall
running time of O(mn2) for Bottleneck.

 10970037, 1996, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/(SIC

I)1097-0037(199612)28:4<
221::A

ID
-N

E
T

6>
3.0.C

O
;2-N

 by U
niversity O

f C
alifornia, W

iley O
nline L

ibrary on [11/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

THE BOHLENECK GRAPH PARTITION PROBLEM 223

We now propose several possible improvements to
speed up the running time of Bottleneck.

The Bottleneck algorithm searches for the optimal
w., , as described in Corollary 1.1, in an iterative manner.
The best running time that we have been able to achieve
is realized by employing a binary, rather than iterative,
search for the optimal we,. We can reduce the number of
calls to Test (G,) from O(m) to O(1og m) and thereby
find the optimal w,, in time O(nZ log n).*

Another approach is to improve the running time of
an iterative implementation of Bottleneck. For instance,
the application of the algorithm can be preceded by a
preprocessing step, producing for each graph G, the list
of sizes of its connected components. As this is equivalent
to the disjoint sets union-find problem, it can be accom-
plished in time O (m (m , n)), where a is Tarjan’s inverse
of Ackermann’s function (see [81). Since for the graph
Go = (V. Eo) the number of components is n (all isolated
vertices), there are, in the process of scanning the lists
for G I , i = 1, . . . , m, at most n steps when an edge is
added and the sizes of components of the graph are
changed. Hence, we need consider only the indices i I ,
. . . , i,, that correspond to the highest index graph prior
to a change in the number of connected components.
Consequently, the procedure Bottleneck only goes
through at most n steps rather than m steps, yielding a
running time of O(ma(m, n) + n3), which is O(n3).

Notice that the O(n’) term dominates the running time
of the above procedure. Hence, a second potential im-
provement to an iterative Bottleneck may be realized by
improving the efficiency of our dynamic programming
procedure that solves the subset-sum problem arising in
Test (GI). Observe that two consecutive calls to the sub-
set-sum differ only in that, in the latter call, some of the
subset sizes have been combined. Thus, it may be possible
to take advantage of earlier calk to reduce the O(n 2 , run-
ning time of the dynamic programming procedure and
theEby provide an implementation of B o t t l e d that has
a better running time than has the 0 (n log n) algorithm. We
have not, however, been able to find such an improvement.

2. GENERALIZATIONS

Using the same general strategy as above, we can easily
handle several generalizations to the bottleneck graph par-
tition problem. It is convenient to first consider the k-
subset-sum problem that will arise when solving what
we will refer to as the generalized bottleneck partition
problem.

* Note that we are assuming that the edge weights are presorted;
otherwise. we must add O(m log n) to the running times. ‘Ihis does
not affect the asymptotic running time of our algorithm, but could be
the bottleneck in an “improved” algorithm.

k-Subset Sum: Given values cI, . . . , c,,, and A , , . . . ,
At. B , , . . . , Bk, is there a partition of the set [1, . . . ,
p) into k subsets, SI, . . . , Sk, such that Aj 5 cjcsj cj
I B,, f o r j = 1 , . . . , k?

Observe that the subset-sum problem is a special case
of the k-subset-sum problem, with k = 2 and Aj = Bj. As
is the case for the subset-sum problem, the k-subset-sum
problem is weakly NP-complete. We can solve the prob-
lem in O(pk ll;:,’ Bj) time using a dynamic programming
procedure, as follows:

Let

true, if the numbers cI , . . . , cj can be

partitioned

into k sets with the j’th set having

weight nj

(Note: the weight of nk is implicit from

the other parameters)

false, otherwise.

The function, T, satisfies the following recurrence and
boundary condition:

Boundary Condition:

To(O, . . . , 0) = true

Recurrence:

Ti(n, , . . . , nk-l) = T,-,(n, - c j , nk-l) or

- - -or 7‘-l(nl , . . . , nk-l - c i)

or 7‘-l(nl, . . . , nk-I)

The answer to the k-subset-sum problem is “yes” if
T p (N l , . . . , Nk-l) = true for some (N,) satisfying A,
s N, 5 B,, for 1 s j s k (again, note that Nk is implicitly
given).

The function values of Tcan be calculated in increasing
values of n , , nk, i, for 0 5 n, s B, and 0 5 i s p.
Each value of T can be evaluated in O(k) time, leading
to the O(kp llfl,’ B,) running time. Clearly, it is advanta-
geous to let ck = max, { c,) .

 10970037, 1996, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/(SIC

I)1097-0037(199612)28:4<
221::A

ID
-N

E
T

6>
3.0.C

O
;2-N

 by U
niversity O

f C
alifornia, W

iley O
nline L

ibrary on [11/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

224 HOCHBAUM AND PATHRIA

1. Let i’ be the set of connected components of G, .
2. Initialize V, * 0, j = 1, . . . , k .
3. for C E 0 do:

0 then:
output “no”;
STOP.

”+ (’ - (C);
r,m * t (n) - ICI ;
g,(n) +am - ICI;
V,+ V, u (C).

a) if 3 j , + j 2 such that C n W,, # 0 and C n W,, #

b) if C n W, + 0 then:

4. Let cl, . . . , c, be the sizes of the components that remain

Call k-subset-sum, with A, = ((n) and B, = g,(n), for j
in 0,

= 1, . . . , k :
if k-subset-sum returns “no” then output “no”;
else output “yes” (V, + V, u S,, where S, contains the
components chosen for set j) .

Fig. 2. Algorithm Test (G j) for generalized problem.

We now define the generalized bottleneck graph parti-
tion problem:

Instance: A weighted graph G = (V, E) and integer k ,
specified subsets of the vertices, W,, and integersf,(n) ,
g,(n) , for j = 1, . . . , k . A legal partition of the vertices,
V, into k subsets, V , , . . . , V, , satisfies, V j : g,(n)
5 IV,l s f ; (n) , and W, E V,.

Optimization Problem: Find a legal partition of the ver-
tices such that the maximum weight edge crossing be-
tween any two of the sets, V,, and Y2, is minimum.

To handle this generalized problem using Bottleneck,
we proceed exactly as in the previous section, but modify
the “test”:

Test (Gj) : Is there a partition of the connected compo-
nents of Gi that results in a legal partition?

Consider the connected components of G, . If there
exists a component, C , such that C n W, # 0. then C
must be in V,. It follows that if there is a component C
such that C f l W,, f 0 and C n W, f 0, for j , and j ,
different, then the answer to Test (GI) = “no.” Assum-
ing that this is not the case, we can immediately assign
some of the connected components to particular sets, V,.
Of the remaining components, we wish to assign them to
the V,’s to create, if possible, a legal partition; this can
be accomplished via the k-subset-sum procedure. See Fig-
ure 2 for the details of the algorithm.

Theorem 2.1. The generalized bottleneck graph partition

problem can be solved in O(max (m, knF) log n) time,
where F = f l f : , ’ f ; (n) .

Proof: The correctness of the algorithm for the gener-
alized graph partition problem follows from the correct-
ness of Test (Gj).

Each call to test Test (Cj) requires finding the con-
nected components of Gi and an application of the k-
subset-sum problem. The connected components can be
found in time O (m) , and the k-subset-sum problem can
be solved in time O(knF) , since p = O (n) and Bj
= O (f , (n)) . Using a binary search procedure, we make
O(1og n) calls to the “test,” which yields the overall
running time.

We have provided an algorithm for the generalized
graph partition problem which has polynomial running
time for k fixed. If, however, k is considered to be part
of the input, then the generalized graph partition problem
is NP-hard.

Theorem 2.2. No polynomial algorithm exists for solv-
ing the generalized graph partition optimization problem,
unless P = NP.

Proof: We proceed by showing that a polynomial al-
gorithm for the generalized graph partition problem im-
plies the existence of a pseudopolynomial algorithm for
the 3-partition problem. Since 3-partition is known to be
strongly NP-complete (see [2]) , such an algorithm would
imply that P = N P .

Consider an instance of 3-partition: a set A of 3m ele-
ments, a bound B E Z ’, and a size s (a) E 2 ’ for each
a E A , such that each s (a) satisfies (B / 4) < s (a) < (B /
2) and such that ZUtA s (a) = mB. The problem is to
find a partition of A into m disjoint sets S , , S2, . . . , S,,
such that Cats, s (a) = B, for i = 1, . . . , m .

Now, for such an instance of 3-partition, construct a
complete weighted graph G = (V, E) as follows: V
= U:ZIX,, where I X , l = s (a ,) ; if e E E is an edge
between two vertices in the same W, , then assign it weight
1, and otherwise, assign it weight 0. It is easy to see that
the optimal solution to the generalized graph partition
problem on G (with k = m and, f o r j = 1, . . . , k , f l (n)
= g,(n) = B and W, = 0) is 0 if and only if a solution
exists to the 3-partition instance. Since k = m and I V I
= n = mB, and noting that the reduction described can
be canied out in pseudopolynomial time, it follows that
a polynomial algorithm for a generalized graph partition
implies a pseudopolynomial algorithm for 3-partition.

3. SUMMARY

We have shown that the bottleneck graph partition prob-
lem can be solved in polynomial time, despite the fact

 10970037, 1996, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/(SIC

I)1097-0037(199612)28:4<
221::A

ID
-N

E
T

6>
3.0.C

O
;2-N

 by U
niversity O

f C
alifornia, W

iley O
nline L

ibrary on [11/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

THE BOlTLENECK GRAPH PARTITION PROBLEM 225

that the min-sum version of the problem is NP-hard. Our
algorithm uses the Bottleneck Algorithm described in [41
and takes advantage of the pseudo-polynomiality of the
subset-sum problem. Our algorithm runs in time O(n2
log n), where n is the number of vertices in the graph;
for dense graphs, this running time is asymptotically opti-
mal for any algorithm that requires, but does not presume,
the edge weights to be sorted, since we have a lower
bound of O(m log m) for sorting (of course, we have not
established that having sorted edge weights is necessary
for solving the bottleneck graph partition problem).

Having established the polynomiality of the bottleneck
graph partition problem, it may be interesting to discover
other polynomial algorithms using different approaches.
For instance, perhaps some type of iterative local neigh-
borhood search algorithm is possible. We observe, how-
ever, that a simple neighborhood based on swapping verti-
ces between sets is not exact, i.e., a local improvement
algorithm using a neighborhood based on swapping verti-
ces between sets can get trapped in minima that are lo-
cally, but not globally, optimal.

This research was supported in part by ONR Contract
N00014-91-J-1241 (D.S.H.). A.P. was supported in part by an
NSERC '67 scholarship provided by the Natural Sciences and
Engineering Research Council of Canada.

REFERENCES

[11 P. Brucker, On the complexity of clustering problems.
Lecture Notes in Operations Research and Mathematical

Systems, Vol. 25 (R. Henn, Ed.). Springer-Verlag, Berlin
(1970).
M. R. Carey and D. S. Johnson, Computers and Intracta-
bility: A Guide to the Theory of NP-Completeness. Free-
man, San Francisco (1979).
M. R. Carey, D. S. Johnson, and L. Stockmeyer, Some
simplified NP-complete graph problems. Theor. Comput.
Sci. 1 (1976) 237-267.
D. S. Hochbaum and D. Shmoys, A unified approach
to approximation algorithms for bottleneck problems. J.
Assoc. Comput. Mach. 33(3) (1986) 533-550.
R. M. Karp, Reducibility Among Combinatorial Prob-
lems. Complexity of Computer Computations (R. E.
Miller and J. W. Thatcher, Eds.). Plenum Press, New
York (1972) 85- 103.
B. W. Kernighan and S. Lin, An efficient heuristic proce-
dure for partitioning. Bell Syst. Tech. 49 (1976) 291-
307.
C. Monma and S. Sun, Partitioning points and graphs to
minimize the maximum or the sum of diameters. Proceed-
ings of the Sixth International Conference on the Theory
and Applications of Graphs. Wiley, New York (1988).
R. E. Tarjan, Data Structures and Network Algorithms.
Regional Conference Series in Applied Mathematics, No.
44. SIAM, Philadelphia, PA (1983).

[21

[31

(41

[51

[61

[71

[81

Received December 1, 1993
Accepted July 2. 1996

 10970037, 1996, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/(SIC

I)1097-0037(199612)28:4<
221::A

ID
-N

E
T

6>
3.0.C

O
;2-N

 by U
niversity O

f C
alifornia, W

iley O
nline L

ibrary on [11/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

